If it's not what You are looking for type in the equation solver your own equation and let us solve it.
37a+1111=5a^2+35a
We move all terms to the left:
37a+1111-(5a^2+35a)=0
We get rid of parentheses
-5a^2+37a-35a+1111=0
We add all the numbers together, and all the variables
-5a^2+2a+1111=0
a = -5; b = 2; c = +1111;
Δ = b2-4ac
Δ = 22-4·(-5)·1111
Δ = 22224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{22224}=\sqrt{16*1389}=\sqrt{16}*\sqrt{1389}=4\sqrt{1389}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-4\sqrt{1389}}{2*-5}=\frac{-2-4\sqrt{1389}}{-10} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+4\sqrt{1389}}{2*-5}=\frac{-2+4\sqrt{1389}}{-10} $
| 2^x-3=256 | | r^+12=61 | | 4x-5(-2x-1)=-23 | | 5h-4=29 | | 2a-6-5a=-27 | | 3(2x+5)=8x+19 | | 12x-(5-7x)+3=25x-(2+6x) | | 32=3y-11 | | 4z+5z+6=15 | | 5a^2+2a+1111=5a(a+7) | | 10−5y= −30−30 | | 5y+10-4y=-10 | | x^2-35x+10=0 | | 5y-4y+7=19 | | 100÷n=-20 | | (5x6)=+(4x2) | | x^–7x+10=0 | | w^2-12=-36 | | 12w−24=1212 | | Y=1/8(x-8)^2+2 | | t²+10t-428=0 | | 60=50t-t² | | 60=50t-t×t | | X+5=15x+5 | | 0.75x=-8 | | 3x-28=-2x+18 | | 9(x-14)=24 | | 7-4x=1-x | | 2(6-2x)=8 | | (m+2)(m-2)=14 | | -7y=15-4y | | x+(-5)=-9 |